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Abstract—In this work, the accuracy of soil moisture retrieved 
from ASAR data over bare or sparsely vegetated surfaces is 
investigated by means of a simulation study. The soil moisture 
retrieval method is based on an optimization algorithm that  
appropriately inverts theoretical direct models by assimilating a 
priori information on surface parameters. In order to account for 
a large variability of roughness conditions, two complementary 
models have been used, namely the Integral Equation Method 
model and the Geometrical Optics model. The performance of 
the inversion method has been assessed on simulated noisy ASAR 
data, as a function of different a priori information quality level. 

Soil moisture; SAR; IEM model; GO model; Inversion 
method;  

I.  INTRODUCTION  
The dependence of SAR backscattering on soil moisture 

and surface roughness, over bare fields, has been widely 
studied and modeled [1]. Many experiments confirmed a good 
sensitivity of radar measurements to soil moisture conditions. 
These observations make sensible to address the inverse 
problem, i.e. retrieving soil moisture from backscattering data. 
However, the experience gained with single-parameter SAR 
systems, such as ESR-1/2, has shown that soil moisture 
estimates are affected by large errors [2]. This is mainly 
because many combinations of soil moisture and soil roughness 
parameters correspond to the same measured backscattering 
value. In this respect, improvements of soil moisture estimation 
accuracy can be obtained principally by using multi-parameter 
radar measurements and a priori information on surface 
parameters. The accuracy of retrieved soil moisture also 
depends on the inversion algorithm adopted. Algorithms based 
on the inversion of theoretical models are preferred to 
empirical relationships because the latter are valid for limited 
and, often, site-dependent data sets. Unlike, model based 
algorithm can be adapted to a wider range of surface 
conditions. In this study, the Integral Equation Method (IEM) 
and the Geometrical Optics (GO) models are employed, 
because they are applicable to roughness conditions going from 
smooth to very rough ones [3]. 

Another factor that can be exploited to improve the soil 
moisture accuracy is the quality level of a priori information. 

The a priori information consists of tentative knowledge about 
the soil roughness and soil moisture conditions. Prior 
information on soil moisture content may come, for example, 
from networks of ground stations or form land process models. 
Whereas, initial guess values on surface roughness may be 
gathered from site agricultural calendar or from simple 
empirical relationships between SAR backscattering and 
roughness state. The a priori information is of high quality 
level when it is close enough to the true solution. When this 
occurs, more accurate estimates of soil moisture are possible by 
constraining the optimization algorithm. This corresponds to 
search solutions close to the a priori information, instead of 
searching within the whole parameter space.  

In this study, following a methodology as in [4], a Bayesian 
framework is adopted to derive an optimization algorithm, 
which estimates soil moisture content from HH&VV SAR 
backscattering values at C-band. The algorithm inverts IEM 
and GO models appropriately assimilating a priori information 
on surface parameters. 

In section II, the soil moisture retrieval problem and the 
optimization algorithm are shortly introduced. Then, the 
simulated data set is presented. Subsequently, the dependence 
of the retrieved soil moisture accuracy on the simulated SAR 
data configurations, measurement errors and different quality 
level of a priori information is investigated. Finally, 
conclusions are given. 

II. THE SOIL MOISTURE RETRIEVAL BY MODEL INVERSION 
The relationship between multi-dimensional (i.e. multi-

polarization, multi-angle, etc.) radar backscattering coefficient, 
σ0

t, and surface geophysical parameters, p, can be  modeled as: 

σ0
t  =  f(p),                                        (1) 

where f(·) is a direct theoretical model. In this paper, bare or 
sparsely vegetated surfaces only will be considered. Then, 
direct theoretical models are surface scattering models, namely 
IEM and GO. 

The geophysical parameters which characterize the soil 
surface are: the complex soil dielectric constant εr, the 

0-7803-9051-2/05/$20.00 (C) 2005 IEEE



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
25 JUL 2005 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Soil moisture retrieval from ASAR measurementsover natural surfaces
with a large roughness variability 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
CNR ISSIA Via Amendola 122/D I-70126, Bari, Italy 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM001850, 2005 IEEE International Geoscience and Remote Sensing Symposium Proceedings
(25th) (IGARSS 2005) Held in Seoul, Korea on 25-29 July 2005. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

4 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



roughness parameters expressed in terms of the root mean 
square (rms) height of soil surface s, and the correlation length 
l, associated to the soil surface autocorrelation function (ACF). 
The ACF is assumed exponential when IEM surface scattering 
model is used. Whereas it is Gaussian when the GO model is 
employed. In this case, the roughness parameter, which 
characterizes the very rough surfaces, is the surface rms slope 
m (i.e. m = √2 s / l) instead of independently s and l.  

For agricultural soils, the imaginary part of the soil 
dielectric constant I(εr), is usually much smaller than the real 
part R(εr). Therefore, to reduce the number of independent soil 
parameters, we have approximated the imaginary part of the 
soil dielectric constant as I(εr)=R(εr)/10. In the inverse 
problem, the volumetric soil moisture content mv, 
corresponding to a soil layer about 5 cm thick, is obtained first 
by estimating the soil dielectric constant and then by inverting 
the empirical expression derived by Hallikainen et al. [5].  

In this context, our goal is to find the “best” estimate of soil 
moisture and soil roughness p which inverts (1), given 
HH&VV SAR measurements σ0

m and prior estimates of soil 
parameters p0. The SAR observations σ0

m differ from the 
theoretical backscatter σ0

t due to measurement errors. In 
addition, the non-linear relationship (1) between predicted SAR 
backscatter σ0

t and geophysical parameters p may also be 
affected by model errors. Using the Bayes’s theorem, the 
probability density function (pdf) of  p conditioned by the 
observed σ0

m is 

 

P(p| σ0
m) ∝ P(σ0

m|p) P(p| p0),                         (2) 

 

where P(σ0
m|p) is the pdf of σ0

m, knowing that the geophysical 
parameters are p, and P(p|p0) is the pdf of p, given the 
knowledge of its prior estimate p0. To obtain the “best” 
estimate of p either the mean or the mode of P(p|σ0

m), which 
are the minimum variance and the maximum likelihood 
estimates of p, can be used, respectively. It is worth mentioning 
that if the pdf in (2) are Gaussian, the minimum variance and 
the maximum likelihood estimators coincide.  

Under the hypothesis that: SAR observations σ0
m and 

parameters p are related by  

 

σ0
m  =  f(p) +  εmφ ,                              (3) 

 

where εmφ is a zero mean Gaussian uncorrelated vector, 
representing the cumulative effect of measurement and model 
errors; the geophysical parameters p distribute around a guess 
value p0 , i.e. 

p  =  p0 +  ε p ,                                      (4) 

where ε p is a zero mean Gaussian uncorrelated error. Then, the 
Bayesian maximum likelihood estimator of p for a generic 
observed σ0

m and subject to prior estimate p0 is obtained by 
maximizing P(p|σ0

m) or equivalently by minimizing the 
functional 

 

J(p)=1/2(σ0
m-f(p))T S-1 (σ0

m-f(p)) + 1/2(p-p0)T G-1 (p-p0),    (5) 

 

where S and G are diagonal covariance matrices of σ0
m and  p, 

respectively [4].  An analytical solution which minimize J(p) 
does not exist, then an iterative approach has to be sought. An 
efficient and quite accurate algorithm exploited to minimize 
J(p) is the Generalized Reduced Gradient Method  [6]. When 
no prior information on the geophysical parameters is 
available, the pdf P(p|p0) in (2) may be modeled as a constant 
term, which can be dropped (i.e. it is incorporated into the 
normalization constant). Then the functional J(p) in (5) reduces 
to its first term only, which represents the traditional 
minimization of the mean square errors between measured and 
predicted backscattering values, i.e. 

J(p)=1/2(σ0
m-f(p))T S-1 (σ0

m-f(p)).                     (6) 

III. DEPENDENCE OF THE RETRIEVED SOIL MOISTURE 
ACCURACY ON MEASUREMENTS AND A PRIORI INFORMATION 

ERRORS  
In this section, a simulation study on the impact of 

measurement, model and a priori information errors on the 
accuracy of soil moisture and soil roughness parameters 
retrieved using C-band SAR data is carried out. The attention 
has been focused on the ENVISAT ASAR configuration in 
which both VV & HH polarizations are acquired at 23° 
incidence angle. For the sake of comparison, some plots 
include both the traditional ERS SAR configuration (i.e. VV at 
23° incidence angle) and a virtual configuration corresponding 
to HH & VV polarizations acquired contemporary at 23° and 
45° incidence angles. SAR measurements have been simulated 
by the IEM and GO models. Since, GO predictions at HH and 
VV polarizations are equal, VV polarization is considered only. 
The selected model input parameters describe a wide range of 
roughness and moisture conditions, i.e. from smooth to very 
rough surfaces and from extremely dry to wet soils.  

The IEM data were simulated by using the following 
intervals of values: relative dielectric constant εr = [3.0+j0.3, 
20.0+j2.0], corresponding approximately to a volumetric 
moisture content interval of mv% = [3% cm3 cm-3, 38% cm3 
cm-3]; roughness vertical standard deviation s = [0.6 cm, 2.1 
cm]; Exponential Auto Correlation Function (ACF) with 
correlation length l = [6 cm, 24 cm]. The GO data were 
simulated by using the same range for εr, but higher values for 
the roughness s. The range of the slope m used is the interval 
[0.2, 0.3], s > 3.0. 

To quantitatively study how measurement, model and a 
priori information errors propagate on the retrieved parameter 
accuracy, noisy data have been simulated. For the sake of 
simplicity measurement and model errors have been 
represented as a unique total error, i.e. εmφ in (3). Then, the 
noisy data have been obtained by adding on the theoretical 
IEM and GO backscattering values, a zero mean Gaussian 
random noise with increasing standard deviation, denoted as 
σε, which ranges between 0.5 dB and 2.0 dB. 



The error on a priori information, i.e. ε p in (4), has been 
simulated as a Gaussian uncorrelated noise, and it has been 
added to the true parameters, to obtain the input guess value, 
i.e. p0. The quality level of a priori information depends on the 
standard deviation σp of the added ε p error. Four different 
quality levels of a priori information have been considered and 
reported in Tab. I. The data set labeled as guess mean contains 
guesses with lowest quality and has been simulated simply by 
taking as a guess, the mean value of the range of each 
parameter. Whereas, the data sets labeled as pb30, pb20 and 
pb10 contain guesses of increasing quality. More precisely, the 
σp values have been set equal to the 30%, 20% and 10% of the 
whole variability range of each parameter, as summarized in 
Tab. II. It follows that the highest quality of a priori 
information is represented by the data set pb10, because it 
contains values closer to the expected parameter. 

Given a (noisy) measurement and using a guess, it is 
expected that the optimization algorithm, after some iterations, 
can fit the measurement and then returns an estimated 
parameter closer to the true one. It follows that the error in 
terms of discrepancy between the estimated and expected 
parameters reduces from an initial value (computed on the 
guesses) to a final value (computed on the output parameter 
returned by the algorithm). The initial rms errors associated to 
pb30, pb20 and pb10 are given by the respective σp values 
shown in Tab. II. Whereas, those associated to the data set 
guess mean, are: s: rms=0.45 cm; l: rms=5.48 cm; m: 
rms=0.03; εr(real) rms=5.05; and, mv% cm3 cm-3 rms=9.28.  

In order to better understand the need of introducing a priori 
information into soil moisture retrieval algorithms, we firstly 
present in Fig. 1 the behavior of soil moisture estimates 
obtained by minimizing the cost function (6). The diagonal 
terms of the covariance matrix S have been set equal to the 
variance of the noise εmφ. As guess values, the data set guess 
mean, i.e. the mean values of the parameter range, has been 
used. This basically corresponds to the retrieval of soil 
moisture from backscattering values without any a priori 
information.  

TABLE I.  GUESS DATA SETS SIMULATED WITH DIFFERENT QUALITY 
LEVELS ADOPTED IN THE RETRIEVAL ALGORITHM AS A PRIORI INFORMATION. 
EP=EXPECTED PARAMETER VALUE, PR=PARAMETER RANGE, ηK=ZERO MEAN 
GAUSSIAN RANDOM VARIABLE, σP

K=STANDARD DEVIATION OF ηK. 

Data set Guess Perturbation 
guess mean Mean value of range - 
pb30 EP±η3 σp

3=30% PR 
pb20 EP±η2 σp

2=20% PR 
pb10 EP±η1 σp

1=10% PR 

 

TABLE II.  STANDARD DEVIATION σP USED TO SIMULATE THE GUESS FOR 
EACH PARAMETER OF THE IEM AND GO MODELS. THE σP  VALUE OF THE mV% 
PARAMETER IS ESTIMATED FROM εr

 BY THE EMPIRICAL RELATIONSHIP.  

Data set s (cm) l (cm) m εr (real) (mv% cm3cm-3)
pb30 σp=0.45 σp=5.40 σp=0.03 σp=5.10 (σp=9.60) 
pb20 σp =0.30 σp=3.60 σp=0.02 σp=3.40 (σp=6.80) 
pb10 σp=0.15 σp=1.80 σp=0.01 σp=1.70 (σp=3.50) 

Fig. 1 shows the rms error of mv% cm3 cm-3 (i.e. ∆mv%) as 
a function of the standard deviation σε of the noise εmφ for 
different SAR data configurations (VV 23°, HH&VV 23°,  
HH&VV 23°&45°). As can be seen, the ∆mv% error increases 
as a function of σε and decreases going from the single-
parameter configuration (i.e. ERS, VV 23°) to the multi-
parameter configuration (i.e. HH&VV, 23°&45°).   

When σε is equal to zero, there is considerable difference 
between ∆mv% errors of the different SAR configurations. 
However, as soon as σε increases, the performances of the three 
configurations tend to get closer and closer. A strong 
sensitivity of ∆mv% to σε is observed. In particular, starting 
from σε ≈ 1 dB the ERS and the ENVISAT configurations are 
characterized by almost the same performances in terms of 
∆mv% error. Since it is unrealistic to have a total budget error 
significantly smaller than 1.0 dB, a priori information needs to 
be assimilated into the retrieval algorithm to benefit from the 
ASAR double-polarized configuration. 

The attention is now focused on the performances of the 
retrieval algorithm using a priori information obtained by 
minimizing the functional in (5). The diagonal terms of the 
covariance matrices S and G and have been set equal to the 
variance of the noise εmφ and ε p, respectively.  The latter are 
the values (σp)2 as reported in Tab. II. 

Fig. 2 shows the ∆mv% error of as a function of the guess 
quality level (related to the standard deviation σp) for different 
σε values of the noise εmφ of a typical ENVISAT configuration 
(i.e. HH & VV at 23° incidence angle). Moreover, the initial 
guess rms errors are shown by the curve plotted with the 
continuous line.  As can be seen, the retrieval algorithm 
reduces significantly the initial ∆mv% error from about 9.6 to 
the final error of 5.9 (at σε=1.5 dB), when a priori information 
pb30 is used. This rms error can be further reduced by using 
backscattering with a lower noise level (for example σε=0.5 
dB) or by using a priori information with a higher quality level 
(for example pb10). In the first case, ∆mv%  reduces up to 4.4. 
In the second case, it decreases to 2.8.  This means that the 
quality level of the a priori information is the main factor that 
can significantly reduce the ∆mv% error. These final ∆mv% 
errors slightly increase with the noise increasing thus indicating 
a strong robustness of the algorithm versus σε. More precisely, 
increasing the σε up to 2.0 dB, ∆mv% increases less than 2% 
for pb30 and less than 1% for pb10. 

In order to investigate the presence of significant bias on 
the retrieved soil moisture, a linear fit between expected and 
retrieved soil moisture values has bee carried out. Given the 
linear model y=A+Bx, (where x and y represent the expected 
and retrieved mv values, respectively) the parameter A and B 
have been estimated, and are: A=2.40% cm3 cm-3, B=0.92. Fig. 
3 shows the scatter plot of mv% values obtained considering the 
HH&VV at 23° incidence angle configuration, a noise of 1.0 
dB and initial guess values correspondent to a priori 
information correct within 20% of the each parameter range 
(i.e. pb20). The linear fit is shown and it can be observed how 
the errors distribute about the fitted line. A bias is present but it 
is negligible. 



Figure 1.  mv% rms error versus σε noise level at different SAR data 
configuration, IEM and GO simulated data, inversion without a priori 
information. 

Figure 2.   mv% rms error versus guess quality level for different standard 
deviation σε of the noise εmφ, IEM and GO simulated data, HH&VV 23° SAR 
data configuration. 

 

Figure 3.  Scatter plot of estimated versus expected mv%. 

 

 

In summary, provided that the total error budget εmφ is less 
than 1.5 dB, and that the a priori information for soil moisture 
is correct within 20% of their whole variability range, the soil 
moisture ∆mv% can be estimated with a rms error of about 5% 
cm3 cm-3 by using HH&VV C-band SAR data at 23° incidence. 

IV. CONCLUSIONS 
In this paper, the soil moisture retrieval accuracy from 

ASAR measurement over soils with a large roughness 
variability have been investigated.  

The study considered SAR data configurations 
corresponding to data collected by sensors on board of the 
ENVISAT satellite. Data were simulated by IEM and GO 
models, perturbed by Gaussian noise. Soil moisture content has 
been retrieved by using an optimization  method assimilating a 
priori information of surface parameters.  

Measurement as well as direct model errors have been 
considered and the retrieval performance have been estimated 
as a function of the a priori information on the soil surface 
state. 

The developed algorithm demonstrates that by using a 
constrained optimization technique, which appropriately 
assimilates a priori information on soil parameters, it is feasible 
to retrieve soil moisture with an rms error of about 5% cm3  
cm-3, from HH and VV SAR backscatter at relatively small 
incidence angles (i.e. approximately between 20° and 35°) 
provided sufficiently accurate (i.e. within 20% of their whole 
variability range) a priori information on surface soil 
parameters is available. 
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